Table of Contents

1. Fourier Transform

1.1. Phasor

  • \[ z=Ae^{i\phi} \]
  • A complex number representing the amplitude \(A\) and the phase \(\phi\) of a sinusoid.
  • \[ ze^{i\omega t}=Ae^{i\phi} e^{i\omega t}= Ae^{i(\omega t + \phi)} \]

1.2. Definition

  • \[ \mathcal{F}[f](\omega)=\int_P f(t) e^{-i\omega t}\, dt \] where \(e^{-i\omega t}\) part is called the kernel.
  • The transformed function is also called \(\hat{f}(\omega)\)
  • \(\hat{f}\) maps a frequency to its phasor.

1.3. Examples

  • \[ \hat{f}(\omega)=\mathcal{F}[\sin(\omega_0t)](\omega)=\frac{1}{2i}(\delta(\omega-\omega_0)-\delta(\omega + \omega_0)) \] where \(\delta\) is the .
    • Note \[

      \begin{align*} \mathcal{F}^{-1}[\hat{f}](t)&=\frac{1}{2i}\left[\int_{-\infty}^{\infty}\delta(\omega-\omega_0)e^{i\omega t}\,d\omega-\int_{-\infty}^{\infty}\delta(\omega+\omega_0)e^{i\omega t}\,d\omega\right]\\ &=\frac{e^{i\omega_0 t}-e^{-i\omega_0 t}}{2i} \end{align*}

      \]

  • Decaying exponential transforms into a Lorentzian distribution?
    • \[ \mathcal{F}[e^{-\alpha t}](\omega) = \frac{1}{\alpha + i\omega} \]
  • Square pulse transforms into a sinc function.
    • \[ f(t)=\begin{cases}A&-\frac{\tau}{2}
    • \(\tau\cdot\Omega = 4\pi\), where \(\Omega\) is the width of the center lobe at the line \(y=0\).
  • Gaussian function transforms into a Gaussian function.
    • \[ e^{\frac{-t^2}{2\sigma^2}}\ \overset{\mathcal{F}}{\to}\ \sigma\sqrt{2\pi}e^{-2\pi^2\sigma^2k^2} \]

1.4. Properties

  • Fourier transform of a real function is Hermitian: \(\hat{f}(-\omega)=\hat{f}^*(\omega)\).
  • Even functions have real Fourier transform and odd functions have imaginary Fourier transform.
  • Periodicity
    • \(\mathcal{F}[f]=\hat{f}\)
    • \(\mathcal{F}^2[f(t)]=f(-t)\)
    • \(\mathcal{F}^3[f]=\mathcal{F}^{-1}[f]\)
    • \(\mathcal{F}^4[f]=f\)
  • \(\mathcal{F}[f*g]=\mathcal{F}[f]\cdot\mathcal{F}[g]\) where \(*\) is the .
  • Shifting
    • Modulation
      • Frequency shifting
      • \[ f(t)\cdot e^{i\omega_0t}\ \overset{\mathcal{F}}{\to}\ \hat{f}(\omega-\omega_0) \]
      • \(f(t)\) can be thought of as an envelope function, or the function in the rotating frame.

1.5. k-Space

  • \(k\) is for the spacial frequency.
  • Fourier transform of a spacial information results in a \(k\)-space.
  • For 2D case, the kernel is \(e^{-i(k_xx+k_yy)}\).
  • \(e^{i(k_xx+k_yy)}\) is a sinusoidal surface with the fringe progression in the direction of the vector \([k_x\ k_y]^{\mathrm{T}}\).
  • In a discrete case, \(k\)-space is quantized with \(\Delta k_{x_i} = 1/\mathrm{FOV}_{x_i}\).
  • The pixel shape is the shape of \(k\)-space and the reciprocal of the image shape is the pixel shape of the \(k\)-space.
  • DC centered view of \(k\)-space is the normal result of Fourier transform, and from we get

1.6. Dirichlet Kernel

1.6.1. Definition

  • \[ D_n(x) = \frac{\sin((n+1/2)x)}{\sin(x/2)}. \]

1.6.2. Properties

  • The convolution of Dirichlet kernel \(D_n\) with any function with period \(2\pi\) is the \(n\)th degree Frourier series approximation of \(f\).
    • \[ (D_n\ast f)(x) = \int_{-\pi}^\pi f(y)D_n(x-y)\,dy = 2\pi \sum_{k=-n}^n \hat{f}(k)e^{ikx} \] where \(f(x+2\pi) = f(x)\).

2. Laplace Transform

2.1. Definition

  • \[ \mathcal{L}\{f\}(s) := \int_0^\infty f(t)e^{-st}dt. \]
  • It transforms the complex-valued real function to a complex-valued complex function.
    • time domain into s-domain.
  • The Laplace transform of a function is often written in a capital letter.

2.2. Properties

  • Linearity
  • Frequency-Domain Derivative
    • \[ \mathcal{L}\{t^nf\} = (-1)^n(\mathcal{L}f)^{(n)} \]
  • (Time-Domain) Derivative
    • \[ \mathcal{L}\{f^{(n)}\} = s^n\mathcal{L}f - \sum_{k=1}^ns^{n-k}f^{(k-1)}(0^-) \]
  • Frequency Shifting
    • \[ \mathcal{L}\{e^{at}f\} = \mathcal{Lf}(s-a) \]
  • Convolution
    • \[ \mathcal{L}\{f\ast g\} = (\mathcal{L}f)\cdot(\mathcal{L}g) \]

2.3. Z-Transform

  • Discrete-time equivalent of Laplace transform
  • Complex valued frequency domain, the z-domain.

2.3.1. Definition

  • \[ \mathcal{Z}\{x[n]\}(z) = \sum_{n=-\infty}^{\infty}x[n]z^{-n}. \]
  • See

3. Mellin Transform

  • Multiplicative version of two-sided 2

3.1. Definition

  • \[ \mathcal{M}\{f\}(s) = \varphi(s) = \int_0^\infty x^{s-1}f(x)\,dx. \]
  • The inverse transform is given by \[ \mathcal{M}^{-1}\{\varphi\}(x) = f(x) = \frac{1}{2\pi i}\int_{c-i\infty}^{c+i\infty}x^{-s}\varphi(s)\,ds. \]

4. Reference

Created: 2025-05-06 Tue 23:34